Atmospheric Aerosol Source-Receptor Relationships: The Role of Coal-Fired Power Plants

Allen Robinson, Spyros Pandis, Cliff Davidson Carnegie Mellon University

Atmospheric Particulate Matter

PM-2.5 Standard Promulgated in 1997

Design of efficient and effective control strategies requires understanding:

- What PM component(s) cause adverse health effects
- The contribution of various sources to current PM levels
- How PM concentrations respond to emission changes of a given source or sources

Sources of Fine PM and Their Precursors

PM-2.5 Composition during the Winter of 1999 in Philadelphia

Coal-Fired Power Plants and PM-2.5

PM-2.5 Composition during the Winter of 1999 in Philadelphia

Objectives of the Pittsburgh Air Quality Study

- Characterize PM and its sources in the Pittsburgh area
- Quantify the impact of the various sources (transportation, power plants, biogenic, etc.) to the PM concentrations in the area
- Improve our understanding of the responses of PM to changes in emissions
- Develop and evaluate the next generation of atmospheric PM monitoring techniques (real time single particle measurements, ultrafine PM, organics, continuous, etc.)
- Elucidate the links between PM and health
- Quantify the relationship between indoor and outdoor concentrations

See homer.cheme.cmu.edu

Current Team Members

- S. Pandis, C. Davidson, A. Robinson, N. Donahue [CMU] (NSM distributions, ions, metals, ozone, NOx, HNO₃, NH₃, VOCs, size-resolved measurements)
- A. Wexler, [U.C. Davis] (Single particle mass spectrometry, organic aerosols)
- M. Johnston [U. Delaware] (Single particle mass spectrometry, organic aerosols)
- W. Rogge [Florida Int.] (Organic speciation)
- B. Turpin [Rutgers] (OC/EC, FTIR, organic characterization)
- S. Hering [Aerosol Dynamics] (Semi-continuous nitrate, sulfate, carbon)
- D. Eatough [BYU] (Organic/Inorganic sampling)
- J. Ondov [U. Maryland] (Semi-continuous metals)
- S. Buckley [U. Maryland] (Single-Particle metals metals)
- M. Hernandez [U. Colorado] (Bioaerosols)
- J. Collett [Colorado State] (Peroxides, fogwater)
- U. Baltensperger [Paul Sherrer Inst.] (Surface area)
- K. Christ [Ohio U.] (Satellite sites, data management)
- G. Cassucio [RJ Lee Group] (Morphology, coarse single particle analysis)
- J. Kahl [U. Wisconsin] (Meteorology)
- P. Hopke [Clarkson] (Source-receptor relationships)
- L. Barrie [PNNL] (Organics)
- C. White [DOE-NETL] (Organics)

Support

Direct:

- DOE (45%)
- EPA (45%)

Carnegie Mellon University and others (10%)

Indirect:

- EPA speciation network
- Allegheny County Health Department
- Pennsylvania DEP
- Ohio EPA
- West Virginia EPA

Why Pittsburgh?

Predicted PM_{2.5} Aerosol for the Eastern US (July 10, 1995)

Ambient Measurements

Objectives:

Examine Atmospheric Process

Evaluate Deterministic Air Quality Models

Statistical Source-Apportionment

- Examine Health Effects
- Indoor-outdoor relationships

Baseline Ambient Measurements

May 01–Oct 02 (18 months)

Almost continuous:

- Number distribution (3 nm -10 mm)
 PM₁₀ Composition
- Surface area
- **TEOM PM mass**
- OC/EC
- Sulfate/nitrate/carbon
- Single particle size composition
- Gases (O_3, NO_x, CO, SO_2)
- Meteorology, Visibility

Daily averages:

- PM, Mass
- PM_{2.5} Composition
- Gases (VOCs, HNO₃, NH₃)
- Bioaerosols
- Hydrogen and organic peroxides

Other:

- Organic speciation (2 weeks)
- Cloud-fog composition

Intensive Ambient Measurements

Three Intensive Sampling Periods

- July 2001
- January 2002
- October 2002

Increased frequency of all measurements

 PLUS: Size-resolved composition, PC-BOSS, FTIR, Organic Partitioning, Semi-continuous metals, LIBS, TDMA-RSMSII, CCN measurements, etc.

Coordination with Other Studies

- DOE
- EPA Supersite
- Other

Sites in the City of Pittsburgh

Remote Satellite Sites

Supersite Location: Carnegie Mellon University

Location of Central Supersite

Advanced Ambient Measurements

- Continuous Size Distributions
- Single Particle Characterization
 - Single Particle Mass Spectrometry
 - Laser Induced Breakdown Spectroscopy
- Semi-Continuous Metals
- Semi-Continuous OC/EC
- Semi-Continuous Nitrate, Sulfate, and Carbon
- Continuous Particle Surface Area
- Organics Speciation

Continuous Measurements of Particle Size Distributions

On-Line Single Particle Measurement (size and composition)

RSMS – Single Particle Mass Spectrometer PI: Wexler

Three Instruments:

- RSMS-III Wexler (UC Davis)
 APS-IMS Johnston (U. Del.)
- LIBS Buckley (U. Maryland)

Applications:

- Ambient measurements
- Source characterization
- Advanced source apportionment

Single Particle Classification

Most prevalent particle class in Atlanta August 1999. (PI Wexler)

Size and Composition Classes in Atlanta August 1999

Semi-continuous metals measurements allow identification of individual sources

Measurements of Se & Ni in **College Park, MD**

Wind from SW

PI: John Ondov

Source Apportionment of Primary vs. Secondary PM

PM-2.5 Composition during the Winter of 1999 in Philadelphia

Statistical Source-Apportionment for Primary PM-2.5

PM-2.5 Composition during the Winter of 1999 in Philadelphia

Advanced Statistical Source Apportionment

Combining PM and meteorology data allows identification of source regions.

PI: P. Hopke

Source regions for As in Underhill, VT

Source Characterization

Objectives:

- Update source fingerprints for CMB
 - Steel industry
 - Coal fired boilers
 - Mobile sources
 - Wood burning
- Advanced source characterization
 - Organics
 - Single Particle

Dilution Sampling: Organic PM Emissions From Combustion Systems

- Plume processes effect volatile PM emissions
- Organic fingerprints for source apportionment
- Characterization of sources with single particle instruments

Schematic of Portable Dilution Sampler

Dilution Effects Emissions

Dilution sampling on a pilot-scale combustor

Single Particle Source Characterization

Objective: Combining single particle ambient and source data may allow source apportionment on a particle by particle basis.

Two Systems: APS-IMS - Johnston (U. Del.) LIBS – Buckley (U. Maryland)

LIBS: Single Particle Metals Data

LIBS system deployed at Gallo Glass Furnace #1.

Single Particle Source Apportionment

LIBS provides elemental composition of particle. Associations between elementals potentially allow source identification on a single particle basis. **PI: Buckley**

Deterministic Modeling to Apportion Secondary PM

PM-2.5 Composition during the Winter of 1999 in Philadelphia

Atmospheric processes and PM-2.5

Grid to model PM in the Eastern US

Predicted Ozone and Sulfate July 15, 1995 (2:00 p.m.)

OZONE

SULFATE

Model Evaluation

The Source-Receptor Challenge: Interactions between Fine PM and Their Precursors

PM-2.5 Composition during the Winter of 1999 in Philadelphia

Response of Ozone and PM_{2.5} Concentrations to VOC and NO_x controls in L.A.

Fine PM can increase for significant reductions of VOC emissions if NOx is not reduced too (formation of additional nitric acid)

Results and Expected Benefits

- Comprehensive characterization of PM in Pittsburgh region
- Development of database for evaluation of air quality models
- Updated fingerprints for critical sources
- Development of next generation of source apportionment techniques
- Quantify the contribution of coal-fired power plants to primary and secondary PM
- Evaluation of emission control strategies

PM Characteristics and Health

- Total number (N)
- Total surface area (S)
- PM_x, PM_{2.5}, PM₁₀, PM_{x-y}
- Metals (Fe, Mn, etc.)
- Sulfate (PM_{2.5}, PM₁₀)
- Nitrate (PM_{2.5}, PM₁₀)
- OC (PM_{2.5}, PM₁₀)
- EC (PM_{2.5}, PM₁₀)
- Acidity
- Bioaerosols
- Polar Organics

- Non-polar organics
- Specific organic classes
- Hydrogen and organic peroxides
- Total soluble PM_{2.5}, PM₁₀
- Specific sources (diesel or gasoline combustion, power plants,...)
- Gas-phase co-pollutants (CO, O₃, NO_x, SO₂, etc.)
- Combinations of the above

Epidemiology-Indoor Pollution

EPIDEMIOLOGY (Samet, Johns Hopkins)

- Collection of mortality and morbidity data from emergency rooms in Oakland
- Use of time-series analysis relating the PM measurements to the health effects
- Coordination with Baltimore Supersite using common measurements
- Complimentary panel study of susceptible populations (children with asthma, chronic obstructive pulmonary disease, and ischemic heart disease).

INDOOR POLLUTION (Sextro, LBNL)

- Indoor measurements in Pittsburgh houses
- Testing of models